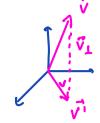
6.3Familles orthogonales et projections orthogonales

But: utiliser les proje orthogonales pour trouver x 1.9. A x ≥ b I dans le cas d'un système inconsistant).



outhompole)

vi est la proj. orthogonale

de vi sur Oxeg

orthogonale

vi et vi

vi et

Définition 65 (famille orthogonale).

Une famille de vecteurs $\{\vec{u}_1,\ldots,\vec{u}_p\}$ de \mathbb{R}^n est dite orthogonale si

Exemples

$$\vec{v}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Exemples
$$\vec{V_1} \cdot \vec{V_2} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \quad \vec{V_3} \cdot \vec{V_2} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \quad \vec{V_3} \cdot \vec{V_2} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \quad \vec{V_2} \cdot \vec{V_3} = 0$$

$$\vec{V_1} \cdot \vec{V_2} < 0$$

$$\vec{V_2} \cdot \vec{V_3} = 0$$

$$\vec{V_4} \cdot \vec{V_4} = 1$$

=) & vi, vz, vz y west pas orthogonale

2)
$$\vec{u}_{3} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$
 $\vec{u}_{2} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ $\vec{u}_{3} = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$

Alors yeur viz y est orthogonale.

c'est auss: une famille libre de R3. Remaugue:

Théorème 60. Soit $\{\vec{u}_1, \dots, \vec{u}_p\}$ une famille orthogonale de \mathbb{R}^n formée de vecteurs \vec{u}_i non nuls pour tout $1 \leq i \leq p$. Alors la famille

5 m, ..., mpy est lin. indépendante.

Renorque: on a forcement p < n!

Preuve nontions que <u>da virt ... + da prip</u> = 0 r'adnet que la solution triviale. Soit 15isp.

 $0 = \left(\begin{array}{c} \alpha_1 \vec{\mu}_1 + \dots + \alpha_p \vec{\mu}_p \end{array} \right) \cdot \vec{\mu}_i$

= d, M, M; + ... + d; W; W; + ... + dp Mp·M;

= d: || || || d'où d: || || || = 0

donc soit $\alpha_i = 0$ soit $\|\vec{u}_i\|^2 = 0$ Comme $\vec{u}_i \neq \vec{0}$, $\|\vec{u}_i\| > 0$ et $\alpha_i = 0$.

Finalement $d_1 = \dots = dp = 0$ is $\sqrt{100}$ est line indépe

Remarque (II, ..., IIp) est une base de span JIII, ..., IIp), mais ce n'est pas force nent une base de R? (p < n!)

Définition 66 (base orthogonale).

Soit W un sous-espace vectoriel de \mathbb{R}^n . On appelle base orthogonale de W toute base qui est composée d'une famille orthogonale.

Exemples

1) p. 158 (
$$\vec{v_1}, \vec{v_2}, \vec{v_3}$$
) est une base non orthogonale de \mathbb{R}^3

Application

Pour trouver les composantes d'un vecteur dans une base orthogonale, on peut utiliser soit les techniques de changement de base ou de résolution de système (échelonnement d'une matrice augmentée) classiques, soit utiliser les propriétés du produit scalaire :

Soit
$$B = \begin{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \end{pmatrix}$$
 la base oithogonale

 $III.$ $III.$ $III.$

vue ci-dessus et $II.$ $III.$

on cherche $III.$ III

néthode avec l'orthogonalité:

$$\vec{\nabla} \cdot \vec{M} : = \left(d_A \vec{M}_A + d_2 \vec{M}_2 + d_3 \vec{M}_3 \right) \cdot \vec{M} :$$

$$= d_1 || \vec{M}_1 ||^2$$

$$= d_1 || \vec{M}_2 ||^2$$

$$= \frac{\vec{\nabla} \cdot \vec{M}_3}{|| \vec{M}_2 \cdot \vec{M}_3} = \frac{\vec{\nabla} \cdot \vec{M}_3}{\left(\frac{1}{0}\right) \cdot \left(\frac{1}{0}\right)} = \frac{4}{2} = 2$$

$$d_2 = \frac{M}{4} = M$$

$$d_3 = \frac{8}{2} = 4$$

Théorème 61. Soient W un sous-espace vectoriel de \mathbb{R}^n et $(\vec{u}_1, \dots, \vec{u}_p)$ une base orthogonale de W. Alors $\bigvee \vec{w} \in W$, on \bullet

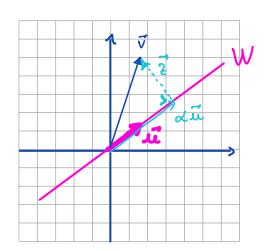
Preuve Soit 14i69

$$\vec{W} \cdot \vec{u}_{i} = \left(\sum_{k=1}^{n} \alpha_{k} \vec{u}_{k} \right) \cdot \vec{u}_{i} = \sum_{k=1}^{n} \alpha_{k} \vec{u}_{k} \cdot \vec{u}_{i}$$

$$= \alpha_{i} \vec{u}_{i} \cdot \vec{u}_{i} = \alpha_{i} = \frac{\vec{w} \cdot \vec{u}_{i}}{\vec{u}_{i} \cdot \vec{u}_{i}}$$

Conclusion: Avec une base orthojonale, on a une méthode alternative à l'échelonnement de matrices.

Projections orthogonales



viele, vi≠o W= spansing et vi∈le on cherche une décomposition

On cherche à déteniner de Ret ZEW1.

Donc
$$\alpha = \frac{\vec{v} \cdot \vec{\mu}}{\vec{\mu} \cdot \vec{\mu}} \in \mathbb{R}$$

On appelle « ii la proj. orte. de
$$\vec{v}$$
 sur \vec{W} .

$$P'O_{W}^{(\vec{v})} = \frac{\vec{v} \cdot \vec{n}}{\vec{n} \cdot \vec{n}} \vec{n}$$

 $\vec{z} = \vec{v} - \text{proj } (\vec{v})$ est la composante de \vec{v} orthogonale ĩeW[⊥].

Exemple
$$\vec{v} : \begin{pmatrix} -1 \\ 2 \end{pmatrix} \qquad W : Span : \begin{pmatrix} 1 \\ 4 \end{pmatrix} \cdot \vec{y}$$

$$\vec{u} : \begin{pmatrix} 1 \\ 4 \end{pmatrix} = \frac{\vec{v} \cdot \vec{u}}{\vec{u} \cdot \vec{u}} \quad \vec{u} : = \frac{\begin{pmatrix} -1 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 4 \end{pmatrix}}{\begin{pmatrix} 1 \\ 4 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 4 \end{pmatrix}} = \frac{1}{2} \begin{pmatrix} 1 \\ 4 \end{pmatrix} = \begin{pmatrix} 1/2 \\ 1/2 \end{pmatrix}$$

$$\vec{v} : \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} -1/2 \\ 1/2 \end{pmatrix} = \begin{pmatrix} 1/2 \\ 1/2 \end{pmatrix} = \begin{pmatrix} -3/2 \\ 3/2 \end{pmatrix} \in W^{\perp}.$$

Définition 67 (famille orthonormale).

On dira qu'une famille $\{\vec{u}_1,\ldots,\vec{u}_p\}$ de vecteurs de \mathbb{R}^n est orthonormale \sin

- 1. la famille est orthogonale,
- Muil = 1 41sisp 2. tous les vecteurs de la famille sont des vecteurs unitaires. On dira alors que $(\vec{u}_1, \dots, \vec{u}_p)$ est une base orthonormale de

Exemples

2)
$$\vec{V_{n}} = \begin{pmatrix} \frac{3}{2} \\ \frac{2}{2} \end{pmatrix}$$
 $\vec{V_{2}} = \begin{pmatrix} -2 \\ \frac{3}{3} \end{pmatrix}$ $\vec{V_{3}} = \begin{pmatrix} -6 \\ -4 \\ 13 \end{pmatrix}$
 $\vec{V_{n}} \cdot \vec{V_{2}} = -6 + G = 0$
 $\vec{V_{n}} \cdot \vec{V_{3}} = -48 - 8 + 26 = 0$
 $\vec{V_{2}} \cdot \vec{V_{3}} = 42 - 42 + 0 = 0$

On normalise

$$\|\vec{v_2}\| = \sqrt{3^2 + 2^2 + 2^2} = \sqrt{43}$$

$$\|\vec{v_2}\| = \sqrt{43}$$

$$163$$

$$\|\vec{v_3}\| = \frac{1}{\sqrt{43}} |\vec{v_3}| = \frac{1}{\sqrt{43}} |$$

Théorème 62. Soit $U = (\vec{u}_1 \cdots \vec{u}_n) \in M_{m \times n}(\mathbb{R})$ une matrice. Alors les colonnes de U sont orthonormales si et seulement si

Exemple
$$U = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 3×2

$$U^{T}U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I = 2$$

$$D \text{ onc } \left(\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right) \text{ est case base arthonomode du}$$

$$Span 9 \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \end{pmatrix} 4.$$

$$Uv^T \neq I_3$$
.

Théorème 63. Soit $\underline{U \in M_{m \times n}(\mathbb{R})}$ une matrice dont les colonnes sont orthonormales. Soient $\vec{v}, \vec{w} \in \mathbb{R}^n$. Alors

Preuse: Je suffit de prousee 2.

2.
$$\vec{v} : \begin{pmatrix} \vec{v}_1 \\ \vec{v}_n \end{pmatrix}$$
 et $\vec{\omega} = \begin{pmatrix} \vec{\omega}_1 \\ \vec{\omega}_n \end{pmatrix}$, $\vec{U} = \begin{pmatrix} \vec{\omega}_1 & ... & \vec{\omega}_n \end{pmatrix}$

$$\vec{U} \cdot \vec{v} \cdot \vec{U} \vec{\omega} = \begin{pmatrix} \vec{\omega}_1 & ... & \vec{\omega}_n \end{pmatrix} \begin{pmatrix} \vec{v}_1 \\ \vec{v}_n \end{pmatrix} \cdot \begin{pmatrix} \vec{\omega}_1 & ... & \vec{\omega}_n \end{pmatrix} \begin{pmatrix} \vec{\omega}_1 \\ \vec{v}_n \end{pmatrix}$$

$$= \left(\begin{array}{c} \ddot{z} & v_i \vec{u}_i \end{array} \right) \cdot \left(\begin{array}{c} \ddot{z} & \omega_j \vec{u}_i \end{array} \right) = \left[\begin{array}{c} \ddot{z} & \left(v_i \omega_i \right) \vec{u}_i \cdot \vec{u}_i \end{array} \right]$$

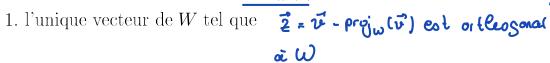
$$= \left[\begin{array}{c} \ddot{z} & \left(v_i \omega_i \right) \vec{u}_i \cdot \vec{u}_i \end{array} \right] = \left[\begin{array}{c} \ddot{z} & \left(v_i \omega_i \right) \vec{u}_i \cdot \vec{u}_i \end{array} \right]$$

$$= \left[\begin{array}{c} \ddot{z} & \left(v_i \omega_i \right) \vec{u}_i \cdot \vec{u}_i \end{array} \right] = \left[\begin{array}{c} \ddot{z} & v_i \omega_i \end{array} \right] = \left[\begin{array}{c} \ddot{z} & \left(v_i \omega_i \right) \vec{u}_i \cdot \vec{u}_i \end{array} \right]$$
Remarques
$$= 1$$

- 1. Les propriétés ci-dessus montrent que l'application linéaire $\vec{v}\mapsto U\vec{v}$ conserve les longueurs et l'orthogonalité.
- 2. On verra le lien entre le produit scalaire de deux vecteurs et l'angle formé par ces derniers dans une série d'exercices.

Généralisation de la projection à \mathbb{R}^n

Soit W un sous-espace vectoriel de \mathbb{R}^n ainsi qu'un vecteur $\vec{v} \notin W$. Alors la projection de \vec{v} sur W, notée $\operatorname{proj}_W(\vec{v})$ est



Théorème 64. Soit W un sous-espace vectoriel de \mathbb{R}^n . Alors tout vecteur $\vec{v} \in \mathbb{R}^n$ peut s'écrire de façon unique comme la somme de deux vecteurs

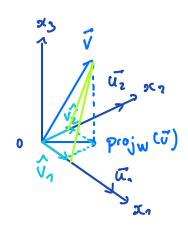
$$\vec{V} = \vec{u} + \vec{z}$$
 avec $\vec{u} \in W$ avec $\vec{z} \in W^{\dagger}$

$$\vec{u} = \text{proj}_{W}(\vec{v}) \quad \text{et} \quad \vec{z} = \vec{v} - \text{proj}_{W}(\vec{v}).$$

Plus précisément, si $W = \text{span}\{\vec{u_1}, \dots, \vec{u_p}\}$ où $(\vec{u_1}, \dots, \vec{u_p})$ est une base orthogonale de W, on a

$$Proj_{W}[\vec{v}] = \frac{\vec{v} \cdot \vec{u}_{A}}{\vec{u}_{A} \cdot \vec{u}_{A}} \vec{u}_{A} + \dots + \frac{\vec{v} \cdot \vec{u}_{p}}{\vec{u}_{p} \cdot \vec{u}_{p}} \vec{u}_{p} \in W$$

Interprétation géométrique



Tique

$$W = plan Ox_1x_2 de base$$

orthogonale (\vec{u}_1, \vec{u}_2)

 $W_1 = span y_1 y_1$
 $W_2 = span y_1 y_2$
 $V_1 = proj_1 y_1 + \hat{V}_2 \text{ avec}$
 $\hat{V}_1 = proj_1 y_1 + \hat{V}_2 + \hat{V}_2 + \hat{V}_3 + \hat{V}_4$
 $\hat{V}_2 = proj_1 y_2 + \hat{V}_3 + \hat{V}_4 + \hat{V}_5 + \hat{V}_5 + \hat{V}_6$
 $\hat{V}_1 = proj_1 y_2 + \hat{V}_2 + \hat{V}_3 + \hat{V}_4 + \hat{V}_5 + \hat{V}_6$
 $\hat{V}_2 = proj_1 y_2 + \hat{V}_3 + \hat{V}_5 + \hat{V}_6 + \hat{V}_7 + \hat{V}$

Remarques

- 1. Le vecteur $\operatorname{proj}_W(\vec{v})$ ne dépend pas du choix de la base orthogonale de W.
- 2. Si la base $(\vec{u_1}, \ldots, \vec{u_p})$ est orthonormale, alors

$$P(0) = (\vec{v} \cdot \vec{u}_1) \vec{u}_1 + \dots + (\vec{v} \cdot \vec{u}_p) \vec{u}_p$$

Exemple
$$\vec{u}_{1} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
 $\vec{u}_{2} = \begin{pmatrix} 2 \\ -4 \end{pmatrix}$ et $\vec{v} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ $\vec{u}_{1} \cdot \vec{u}_{2} = 2 + 2 \cdot (-1) = 0 = 1 \quad (\vec{u}_{1}, \vec{u}_{2})$ est une base orthogonale de $\vec{w} = \text{Span } \vec{v} \cdot \vec{u}_{1} \cdot \vec{u}_{2} \cdot \vec{v}$.

$$P(O_{j}^{*}W) = \frac{\vec{V} \cdot \vec{M_{1}}}{\vec{M_{2}} \cdot \vec{M_{2}}} \vec{M_{2}} + \frac{\vec{V} \cdot \vec{M_{2}}}{\vec{M_{2}} \cdot \vec{M_{2}}} \vec{M_{2}} = \frac{\binom{4}{1} \cdot \binom{4}{1}}{\binom{4}{2} \cdot \binom{4}{1}} \vec{M_{1}} + \frac{\binom{4}{1} \cdot \binom{2}{0}}{\binom{4}{1} \cdot \binom{2}{0}} \vec{M_{2}}$$

$$= \frac{4}{6} \vec{u}_{1} + \frac{1}{5} \vec{u}_{2} = \frac{2}{3} \left(\frac{1}{2}\right) + \frac{1}{5} \left(\frac{2}{6}\right) = \frac{1}{15} \left(\frac{16}{10}\right)$$

$$\vec{z} = \vec{V} - \rho \omega_{j} \omega_{j} \omega_{j} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} - \frac{1}{15} \begin{pmatrix} 16 \\ 10 \\ 19 \end{pmatrix} = \frac{1}{15} \begin{pmatrix} -1 \\ 5 \\ -2 \end{pmatrix} \in W^{\perp}$$
(a vérifier par calcul)

Soit (11, (4)) une œutre base

orthogonale de W. Calculons:

$$\operatorname{proj}_{W}(\vec{v}) = \frac{\begin{pmatrix} \frac{1}{4} \end{pmatrix} \cdot \vec{u}_{1}}{\vec{u}_{1} \cdot \vec{u}_{1}} \quad \vec{u}_{1} + \frac{\begin{pmatrix} \frac{1}{4} \end{pmatrix} \cdot \begin{pmatrix} \frac{1}{4} \\ \frac{1}{4} \end{pmatrix} \cdot \begin{pmatrix} \frac{1}{4} \\ \frac{1}{2} \end{pmatrix}}{\begin{pmatrix} \frac{1}{4} \\ \frac{1}{2} \end{pmatrix} \cdot \begin{pmatrix} \frac{1}{4} \\ \frac{1}{2} \end{pmatrix}} = \frac{\begin{pmatrix} \frac{1}{4} \\ \frac{1}{4} \end{pmatrix} \cdot \begin{pmatrix} \frac{1}{4} \\ \frac{1}{4} \end{pmatrix} \cdot \begin{pmatrix} \frac{1}{4} \\ \frac{1}{4} \end{pmatrix}}{\begin{pmatrix} \frac{1}{4} \\ \frac{1}{4} \end{pmatrix} \cdot \begin{pmatrix} \frac{1}{4} \\ \frac{1}{4} \end{pmatrix}} = \frac{\begin{pmatrix} \frac{1}{4} \\ \frac{1}{4} \end{pmatrix} \cdot \begin{pmatrix} \frac{1}{4} \\ \frac{1}{4} \end{pmatrix}}{\begin{pmatrix} \frac{1}{4} \\ \frac{1}{4} \end{pmatrix} \cdot \begin{pmatrix} \frac{1}{4} \\ \frac{1}{4} \end{pmatrix}} = \frac{\begin{pmatrix} \frac{1}{4} \\ \frac{1}{4} \end{pmatrix} \cdot \begin{pmatrix} \frac{1}{4} \\ \frac{1}{4} \end{pmatrix}}{\begin{pmatrix} \frac{1}{4} \\ \frac{1}{4} \end{pmatrix}} = \frac{\begin{pmatrix} \frac{1}{4} \\ \frac{1}{4} \end{pmatrix} \cdot \begin{pmatrix} \frac{1}{4} \\ \frac{1}{4} \end{pmatrix}}{\begin{pmatrix} \frac{1}{4} \\ \frac{1}{4} \end{pmatrix}} = \frac{\begin{pmatrix} \frac{1}{4} \\ \frac{1}{4} \end{pmatrix} \cdot \begin{pmatrix} \frac{1}{4} \\ \frac{1}{4} \end{pmatrix}}{\begin{pmatrix} \frac{1}{4} \\ \frac{1}{4} \end{pmatrix}} = \frac{\begin{pmatrix} \frac{1}{4} \\ \frac{1}{4} \end{pmatrix} \cdot \begin{pmatrix} \frac{1}{4} \\ \frac{1}{4} \end{pmatrix}}{\begin{pmatrix} \frac{1}{4} \\ \frac{1}{4} \end{pmatrix}} = \frac{\begin{pmatrix} \frac{1}{4} \\ \frac{1}{4} \end{pmatrix} \cdot \begin{pmatrix} \frac{1}{4} \\ \frac{1}{4} \end{pmatrix}}{\begin{pmatrix} \frac{1}{4} \\ \frac{1}{4} \end{pmatrix}} = \frac{\begin{pmatrix} \frac{1}{4} \\ \frac{1}{4} \end{pmatrix} \cdot \begin{pmatrix} \frac{1}{4} \\ \frac{1}{4} \end{pmatrix}}{\begin{pmatrix} \frac{1}{4} \\ \frac{1}{4} \end{pmatrix}} = \frac{\begin{pmatrix} \frac{1}{4} \\ \frac{1}{4} \end{pmatrix} \cdot \begin{pmatrix} \frac{1}{4} \\ \frac{1}{4} \end{pmatrix}}{\begin{pmatrix} \frac{1}{4} \\ \frac{1}{4} \end{pmatrix}} = \frac{\begin{pmatrix} \frac{1}{4} \\ \frac{1}{4} \end{pmatrix} \cdot \begin{pmatrix} \frac{1}{4} \\ \frac{1}{4} \end{pmatrix}}{\begin{pmatrix} \frac{1}{4} \\ \frac{1}{4} \end{pmatrix}} = \frac{\begin{pmatrix} \frac{1}{4} \\ \frac{1}{4} \end{pmatrix} \cdot \begin{pmatrix} \frac{1}{4} \\ \frac{1}{4} \end{pmatrix}}{\begin{pmatrix} \frac{1}{4} \\ \frac{1}{4} \end{pmatrix}} = \frac{\begin{pmatrix} \frac{1}{4} \\ \frac{1}{4} \end{pmatrix}}{\begin{pmatrix} \frac{1}{4} \\ \frac{1}{4} \end{pmatrix}} = \frac{\begin{pmatrix} \frac{1}{4} \\ \frac{1}{4} \end{pmatrix}}{\begin{pmatrix} \frac{1}{4} \\ \frac{1}{4} \end{pmatrix}} = \frac{\begin{pmatrix} \frac{1}{4} \\ \frac{1}{4} \end{pmatrix}}{\begin{pmatrix} \frac{1}{4} \\ \frac{1}{4} \end{pmatrix}} = \frac{\begin{pmatrix} \frac{1}{4} \\ \frac{1}{4} \end{pmatrix}}{\begin{pmatrix} \frac{1}{4} \\ \frac{1}{4} \end{pmatrix}} = \frac{\begin{pmatrix} \frac{1}{4} \\ \frac{1}{4} \end{pmatrix}}{\begin{pmatrix} \frac{1}{4} \\ \frac{1}{4} \end{pmatrix}} = \frac{\begin{pmatrix} \frac{1}{4} \\ \frac{1}{4} \end{pmatrix}}{\begin{pmatrix} \frac{1}{4} \\ \frac{1}{4} \end{pmatrix}} = \frac{\begin{pmatrix} \frac{1}{4} \\ \frac{1}{4} \end{pmatrix}}{\begin{pmatrix} \frac{1}{4} \\ \frac{1}{4} \end{pmatrix}} = \frac{\begin{pmatrix} \frac{1}{4} \\ \frac{1}{4} \end{pmatrix}}{\begin{pmatrix} \frac{1}{4} \\ \frac{1}{4} \end{pmatrix}} = \frac{\begin{pmatrix} \frac{1}{4} \\ \frac{1}{4} \end{pmatrix}}{\begin{pmatrix} \frac{1}{4} \\ \frac{1}{4} \end{pmatrix}} = \frac{\begin{pmatrix} \frac{1}{4} \\ \frac{1}{4} \end{pmatrix}}{\begin{pmatrix} \frac{1}{4} \end{pmatrix}} = \frac{\begin{pmatrix} \frac{1}{4} \\ \frac{1}{4} \end{pmatrix}}{\begin{pmatrix} \frac{1}{4} \end{pmatrix}} = \frac{\begin{pmatrix} \frac{1}{4} \\ \frac{1}{4} \end{pmatrix}} = \frac{\begin{pmatrix} \frac{1}{4} \\ \frac{1}{4} \end{pmatrix}}{\begin{pmatrix} \frac{1}{4} \end{pmatrix}} = \frac{\begin{pmatrix} \frac{1}{4} \\ \frac{1}{4} \end{pmatrix}}{\begin{pmatrix} \frac{1}{4} \end{pmatrix}} = \frac{\begin{pmatrix} \frac{1}{4} \\ \frac{1}{4} \end{pmatrix}}{\begin{pmatrix} \frac{1}{4} \end{pmatrix}} = \frac{\begin{pmatrix} \frac{1}{4} \\ \frac{1}{4} \end{pmatrix}}{\begin{pmatrix} \frac{1}{4} \end{pmatrix}} = \frac{\begin{pmatrix} \frac{1}{4} \\ \frac{1}{4} \end{pmatrix}} = \frac{\begin{pmatrix} \frac{1}{4} \\ \frac{1}{4}$$

$$=\frac{4}{6}\overline{11} + \frac{2}{20}\left(\frac{4}{0}\right) = \frac{1}{15}\left(\frac{16}{10}\right)$$

Donc puju (i) est indépendante de la base 06 chaisie.

Théorème 65 (de la meilleure approximation). Soient W un sousespace vectoriel de \mathbb{R}^n et $\vec{v} \in \mathbb{R}^n$. Soit $\operatorname{proj}_W(\vec{v})$ la projection orthogonale $de \ \vec{v} \ sur \ W$. Alors $\operatorname{proj}_{W}(\vec{v})$ est la meilleure approximation $de \ \vec{v}$ dans W, autrement dit, on a

II v̄- projω cō) II ≤ II v̄-ūII + ūεW.

donc ce sera la distance minimale entre s'et

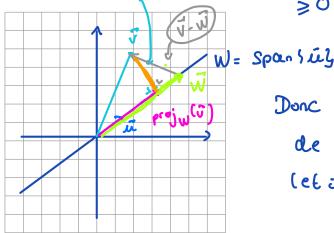
tout vecteur de W.

Preuve: à éaide du th. de Pethagore:

||v-w||2 = ||v-paqiw|v)||2

V-W = V- proju(v)

Illustration (V-110) | W- pwjw (V) |



Donc proju (v) est le vecteur de W le plus proche de v (et il est senique)

Théorème 66. Soit W un sous-espace vectoriel de \mathbb{R}^n et supposons que $(\vec{u}_1,\ldots,\vec{u}_p)$ est une base orthonormale de W. Alors pour tout $\vec{v}\in\mathbb{R}^n$, on a

$$\operatorname{proj}_{W}(\vec{v}) = \underbrace{UU^{\mathsf{T}}\vec{v}}_{\text{nxp}} \quad \text{où } U = (\vec{u}_{x} ... \vec{u}_{p})$$

$$(\text{same } : U^{\mathsf{T}}U = \mathbf{T}_{0})$$

(rappee: UTU=Ip)

Projw(v) = (v.v.) v. + ... + (v.v.p)v.p (x)

Proju (v) est comb. lin. des colonnes de U

$$Proj_{W}(\vec{v})$$
 est comb. lin. des colonnes de U
 $Proj_{W}(\vec{v}) = (\vec{u}_{1} ... \vec{u}_{p}) \begin{pmatrix} \vec{v} \cdot \vec{u}_{1} \\ \vdots \\ \vec{v} \cdot \vec{u}_{p} \end{pmatrix} = (\vec{u}_{1} ... \vec{u}_{p}) \begin{pmatrix} \vec{u}_{1}^{T} \\ \vdots \\ \vec{u}_{p}^{T} \end{pmatrix} \vec{v}$
 $= (\vec{v}) U^{T} \vec{v}$

Remarques

Définition 68 (matrice orthogonale).

orthogonale.

Une matrice $U \in M_{n \times n}(\mathbb{R})$ inversible telle que

Remarques

- déféquévalente: une noutrice de Maxa (IR) inversité telle que U-1=UT est dite orthogonale.
- 2) les colonnes et les lignes de U Sont orthonormales.

6.4 Procédé de Gram-Schmidt

Le procédé de Gram-Schmidt permet d'obtenir une base orthogonale (ou même orthonormée) pour tout sous-espace vectoriel W de \mathbb{R}^n . Une telle base est nécessaire pour pouvoir calculer la projection orthogonale $\operatorname{proj}_W(\vec{v})$ d'un vecteur $\vec{v} \in \mathbb{R}^n$ sur W.

Exemple d'orthogonalisation d'une base

Soient $\vec{v}_1 = \begin{pmatrix} 3 \\ 6 \end{pmatrix}$ $\vec{v}_2 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$ ainsi que $W = \text{Span } \int \vec{v}_1 \cdot \vec{v}_2 \cdot \vec{v}_1$

(v₁, v₂) n'est pas une basc orthogonale. Construisons-en une.

W Etape 1: On pose $\vec{u_1} = \vec{v_1}$ et on cherclee $\vec{u_2} \in W$.

Soit $W_1 = \text{Span} \setminus \vec{u_1} \setminus V$

on sait que v_2 -proj (v_2) est orthogonal à w_1 . Ains: $(\tilde{u}_1, \tilde{v}_2$ -proj $\tilde{v}_1(\tilde{v}_2)$) est une base orthogonal

de W.

Etape ?: On pose etz- vz-projw, (vz).

 $\vec{\mathcal{U}}_{2} : \begin{pmatrix} \frac{1}{3} \end{pmatrix} - \frac{\vec{\mathcal{V}}_{2} \cdot \vec{\mathcal{U}}_{3}}{\vec{\mathcal{U}}_{3}} \quad \vec{\mathcal{U}}_{4} = \begin{pmatrix} \frac{1}{3} \end{pmatrix} - \frac{16}{46} \begin{pmatrix} \frac{3}{3} \end{pmatrix} = \frac{1}{23} \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix}$

Alors ($\binom{3}{6}$, $\frac{1}{23}$ $\binom{-1}{-2}$) est une bose orther de W.

Remarque: ((3), (-1)) forme également une bosse onthogonale de W!

Théorème 67 (de Gram-Schmidt). Soient W un sous-espace vectoriel $de \mathbb{R}^n$ et $(\vec{v}_1, \dots, \vec{v}_p)$ une base de W. Alors on peut construire une base orthogonale de W, selon le procédé suivant :

·
$$\vec{u}_z = \vec{v}_z - \rho_0 \vec{v}_z \vec{v}_z$$
 et $\vec{v}_z = span 4 \vec{u}_1 \vec{u}_2 \vec{v}_z$

·
$$\mathcal{U}_{p} = \mathcal{V}_{p} - p \omega_{j}(\mathcal{U}_{p})$$
 \mathcal{V}_{p-1}

=> $(\mathcal{U}_{m}, ..., \mathcal{U}_{p})$ eot une base on the genale de \mathcal{W} .

Si on charge l'ordre des vecteurs v₁, ..., vp on obtiendre
une autre base 06 de W.

Exemple
$$\vec{v_4} = \begin{pmatrix} \vec{v} \\ \vec{v} \\ \vec{v} \end{pmatrix} \quad \vec{v_4} = \begin{pmatrix} \vec{v} \\ \vec{v} \\ \vec{v} \end{pmatrix} \quad \vec{v_5} = \begin{pmatrix} \vec{v} \\ \vec{v} \\ \vec{v} \end{pmatrix} \quad \vec{v_5} = \begin{pmatrix} \vec{v} \\ \vec{v} \\ \vec{v} \end{pmatrix} \quad \vec{v_6} = \begin{pmatrix} \vec{v} \\ \vec{v} \\ \vec{v} \end{pmatrix}$$

$$W = \text{Span } \vec{v} \cdot \vec{v_7}, \vec{v_7}$$

Etape 0: On remarque que $\vec{v}_{4} = \vec{v}_{2} - \vec{v}_{3}$. Donc $\underline{W} = span | \vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}|_{2} span | |\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{4}|_{3}$ On while que ($\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$) est une base \vec{v}_{4} qui n'est pas orthogonale.

Etape 1:
$$U_{1} = V_{1}$$
 et $W_{1} = Span \} U_{1}$ $U_{2} = V_{2} - \mu \sigma_{3} (V_{2})$. On accordance $U_{1} \in W_{1}$.

$$= \begin{pmatrix} 1 \\ 1 \end{pmatrix} - \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1$$

Simplifions le calcul et prenons plutôt
$$\vec{z}_{z} = \begin{pmatrix} -\frac{3}{4} \\ -\frac{3}{4} \end{pmatrix}$$
 et $W_{2} = 3pan \frac{1}{3} \cdot \vec{u}_{1} \cdot \vec{u}_{2} \cdot \vec{y}$ $W_{2} = 3pan \frac{1}{3} \cdot \vec{u}_{1} \cdot \vec{u}_{2} \cdot \vec{y}$ $W_{2} = 3pan \frac{1}{3} \cdot \vec{u}_{1} \cdot \vec{u}_{2} \cdot \vec{y}$ $W_{2} = 3pan \frac{1}{3} \cdot \vec{u}_{1} \cdot \vec{u}_{2} \cdot \vec{y}$ $W_{3} = V_{3} - Proj_{W_{2}} \cdot (\vec{v}_{3})$ $W_{4} - \frac{V_{3} \cdot \vec{u}_{2}}{2 \cdot \vec{u}_{2} \cdot \vec{u}_{2}} \cdot \vec{u}_{2}$ $W_{2} = \frac{V_{3} \cdot \vec{u}_{1}}{2 \cdot \vec{u}_{1} \cdot \vec{u}_{2} \cdot \vec{u}_{2}} \cdot \vec{u}_{2} \cdot \vec{u}_{2}$ $W_{2} = \frac{V_{3} \cdot \vec{u}_{1}}{2 \cdot \vec{u}_{1} \cdot \vec{u}_{2} \cdot \vec{u}_{2}} \cdot \vec{u}_{2} \cdot \vec{u}_{2} \cdot \vec{u}_{2}$ $W_{2} = 3pan \frac{1}{3} \cdot \vec{u}_{1} \cdot \vec{u}_{2} \cdot \vec{u}_{2} \cdot \vec{u}_{2}$ $W_{2} = 3pan \frac{1}{3} \cdot \vec{u}_{1} \cdot \vec{u}_{2} \cdot \vec{u}_{2} \cdot \vec{u}_{2}$ $W_{2} = 3pan \frac{1}{3} \cdot \vec{u}_{1} \cdot \vec{u}_{2} \cdot \vec{u}$

6.5 Factorisation QR

Si les colonnes d'une matrice $A \in M_{m \times n}(\mathbb{R})$ sont linéairement indépendantes, on peut leur appliquer le procédé de Gram-Schmidt. Cela revient à trouver une factorisation de la matrice A:

Théorème 68 (Factorisation QR). Soit $A \in M_{m \times n}(\mathbb{R})$ une matrice dont les colonnes sont linéairement indépendantes. Alors il existe une factorisation A = QR où

- 1. Q ∈ M_{m×n} (R), avec colonnes orthonormées et formant une base de Jm (A)
- 2. Retinn (IR) triangulaire supérieure, inversible et avec des coeff. diagonaux sui ctement positif.

Remarques

Exemple
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix} \sim \cdots \sim \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}.$$

Sc W = span & vi, vi, vij, alors W= Jm (A) = R4.

Etape 1: on orthogonalise 5 vi, vi, vij avec le procédé de Gram-Schnidt, pris on normalise => Q

$$\cdot \vec{u}_{1} = \vec{v}_{1}$$

$$||\vec{u}_{1}|| = \sqrt{3} \Rightarrow \vec{q}_{1} = \frac{1}{\sqrt{3}} \vec{u}_{1} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$

$$\vec{M}_{L} = \vec{V}_{1} - \text{proj}(\vec{V}_{2}) \quad \text{out} \quad \vec{W}_{A} = \text{span} \; \vec{M}_{A} \; \vec{J}$$

$$= \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} - \frac{\begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}}{\begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}} \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix} - \frac{1}{3} \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} -1 \\ 3 \\ -1 \\ 2 \end{pmatrix}$$

$$d' \circ \vec{u} \quad \vec{q}_{2} = \frac{1}{\sqrt{u_{5}}} \begin{pmatrix} -\frac{1}{3} \\ -\frac{1}{2} \end{pmatrix}$$

$$\cdot \quad \cancel{M}_{3} = \sqrt{3} - \rho noj \quad (\vec{v}_{3})$$

$$\cancel{W}_{2}$$

$$\cancel{W}_{2}$$

$$\cancel{W}_{3} = \sqrt{3} - \rho noj \quad (\vec{v}_{3})$$

$$\cancel{W}_{3} = \sqrt{3} - \rho noj \quad (\vec{v}_{3})$$

$$\cancel{W}_{4} = \sqrt{3} - \rho noj \quad (\vec{v}_{3})$$

$$= \vec{V}_{3} - \frac{\vec{V}_{3} \cdot \vec{\mu}_{4}}{\vec{\mu}_{6} \cdot \vec{\mu}_{5}} \vec{\mu}_{4} - \frac{\vec{V}_{3} \cdot \vec{\mu}_{2}}{\vec{\mu}_{2} \cdot \vec{\mu}_{2}} \vec{\mu}_{2} = \frac{\lambda}{45} \begin{pmatrix} -9 \\ -3 \\ 6 \\ 3 \end{pmatrix}$$

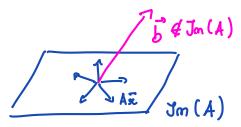
$$= \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{15}} \begin{pmatrix} -\frac{3}{4} \\ -\frac{1}{4} \\ \frac{2}{4} \end{pmatrix}.$$

Etape: Trouver R: R = Q'A Car

Méthode des moindres carrés A∈∩_{m×0} (P)

But: Pour Ax= 5 incompatible, i.e. b & Jm (A) on cherche une polietion "approchée".

On a Jm(A) = > ve Rm | JxeR auc Ax = vj



On clierche le (s) $\vec{z} \in \mathbb{R}^{n}$ f.q.

A \vec{z} soit le plus proche possible

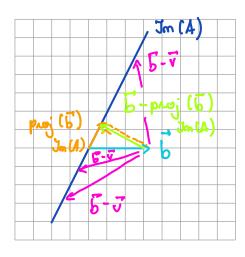
de b. Donc:

$$A = \begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix} \sim \begin{pmatrix} 4 & 4 \\ 0 & 0 \end{pmatrix} . \quad \exists m(A) = Span ? \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

Exemple

Si on prend $\vec{b} = \begin{pmatrix} 2 \\ 0 \end{pmatrix}$, on $\vec{a} \not\in Jm(A)$.

Donc l'éq. Az = b est incompatible.



Praj (b) E Jm (A)

es on va résoudre

$$A\vec{x} = proj_{2m}(A)(\vec{b})$$
, et

avec le the de la meilleure approx.

Définition 69 (solution au sens des moindres carrés). Soient $A \in M_{m \times n}(\mathbb{R})$ une matrice et $\vec{b} \in \mathbb{R}^m$. On appelle solution au sens des moindres carrés de $A\vec{x} = \vec{b}$ le vecteur

Démarche

- 1) Calculer proj (b). Pour cela, on va avoir besoin JmlA)
 d'une base orthogonale de Jm (A).
- 2) Résoudre Ax = proj (b) et trouver x.

 Jn (4)

 Je peut y avoir une seule ou une infinité de solutions.

Suite de l'exemple

1) Projuntation (5) =
$$\frac{\binom{4}{2}\binom{2}{0}}{\binom{4}{2}\binom{4}{2}}$$
 $\binom{4}{2} = \frac{2}{5}\binom{4}{2}$

2) Résolvons
$$A\bar{x} = \frac{2}{5} \begin{pmatrix} 1 \\ 2 \end{pmatrix} : \begin{pmatrix} 1 & 1 & 2/5 \\ 2 & 2 & 4/5 \end{pmatrix}$$

$$\Rightarrow \begin{cases} x_1 = \frac{2}{5} - x_2 \\ x_2 \text{ libre} \end{cases} \Rightarrow x = \begin{pmatrix} \frac{2}{5} \\ 0 \end{pmatrix} + t \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

et on a une infinite de volutions.

L'équation normale

Calculer proj Jm (A)

d'une base ortheogonale de Jm (A)

Donc on
$$\frac{\pi}{2} \cdot q_{i} = 0$$
 $\forall 1 \leq i \leq n$

$$A^{\mathsf{T}}\vec{z} = \vec{O} \in \mathbb{R}^{\mathsf{m}}$$

d'ai
$$A^{T}(\vec{b} - A\hat{x}) = \vec{0}$$

$$A^{T}\vec{b} = A^{T}A\hat{x}$$

Théorème 69. L'ensemble des solutions au sens des moindres carrés de $A\vec{x} = \vec{b}$ est égal à l'ensemble des solutions de

On appelle cette équation l'équation normale.

Remarque Dans cette méthode de résolution, il n'est par méc. de trouver une base arth. de Jn (4)

Exemples

mples

1) Suite:
$$A = \begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix}$$
 $\vec{b} = \begin{pmatrix} 2 \\ 0 \end{pmatrix}$

$$A^{T} A = \begin{pmatrix} 12\\12 \end{pmatrix} \begin{pmatrix} 11\\22 \end{pmatrix} = \begin{pmatrix} 55\\55 \end{pmatrix}$$
, qui est singulière

$$A^{\mathsf{T}} \vec{b} = \begin{pmatrix} 12 \\ 12 \end{pmatrix} \begin{pmatrix} 2 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$$

$$(55 \mid 2) \quad d'où$$

$$\hat{x} = \begin{pmatrix} 2/5 \\ 0 \end{pmatrix} + t \begin{pmatrix} -4 \\ 1 \end{pmatrix}, t \in \mathbb{R}$$

on dit que x est sol. que sens des maindres carrels, mais c'est un ens. de solutions!

$$2) \qquad A = \begin{pmatrix} 4 & 0 \\ 0 & 2 \\ 4 & 4 \end{pmatrix} \qquad \vec{b} = \begin{pmatrix} 4 \\ 0 \\ 4 \end{pmatrix}$$

trouver le sol. Ré avec les 2 néthodes

Théorème 70. Soit $A \in M_{m \times n}(\mathbb{R})$ une matrice. Alors les propriétés suivantes sont équivalentes

1.

2.

3.

Lien avec la factorisation QR

Théorème 71. Soit $A \in M_{m \times n}(\mathbb{R})$ une matrice dont les colonnes sont linéairement indépendantes. Considérons la décomposition A = QR. Alors pour tout $\vec{b} \in \mathbb{R}^m$, $A\vec{x} = \vec{b}$ admet une unique solution au sens des moindres carrés donnée par

6.7 Droite de régression

Supposons qu'on dispose d'un certain nombre de données expérimentales du type $(x_1, y_1), \ldots, (x_n, y_n)$ et qu'on cherche à établir une formule permettant de prédire les valeurs d'une variable en fonction de l'autre variable. Ce type de situation est étudié en analyse statistique. On résout souvent le problème à l'aide d'une méthode qui fait appel aux moindres carrés.

On s'intéresse ici à la relation la plus élémentaire entre deux variables x et y, relation du premier degré du type y = ax + b. Lorsqu'on dispose d'un nuage de points $(x_1, y_1), \ldots, (x_n, y_n)$, on cherche à déterminer les paramètres a et b qui rendent la droite y = ax + b aussi proche que possible des points expérimentaux.

Exemple

Remarques